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Derivations of trapping channel dimensions 

The width and total length of the bypass channel (i.e., Path 2) are indicated as W2 and L2. The total 

length of Path 1 is L1, and Path 1 is composed of five regions (indicated as i, ii, iii, iv, v, in Fig. 1C). 

Each region in Path 1 has its own width and length: W11 and L11 for Region i; W12 and L12 for Region 

ii; W13 and L13 for Region iii; W11 and L14 for Region iv; W15 and L15 for Region v. 

Pressure drop between A and B is Δp =  C(α)L
Qμ(W+H)2

8(WH)3  , L is the length of the channel, Q is the 

volumetric flow rate, μ is the fluid viscosity, W and H is the width and height of the channel, α is the 

aspect ratio (W/H or H/W, 0 ⩽ α ⩾ 1), and C(α) is a constant which is a function of α, i.e., C(α) =

96(1 − 1.3553α + 1.9467α2 − 1.7012α3 + 0.9564α4 − 0.2537α5).(Tan and Takeuchi 2007) 

Since the Path 1 contain five regions as indicated in Fig. 1C, the total pressure drop across Path 1 can 

be expressed as: 

 Δp1 =  Δp11 + Δp12 + Δp13 + Δp14 + Δp15 (S1) 

where Δp1x is the pressure drop at corresponding region in Path 1 (x denotes the region number). 

 Δp1x =  μC1x(α1x)L1xQ1x

(W1x + H)2

8(W1xH)3
 (S2) 

The pressure drop in Path 2 is: 

 Δp2 =  μC2(α2)L2Q2

(W2 + H)2

8(W2H)3
 (S3) 
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Since the pressure drop between point A and B (in Fig. 1C) is constant, i.e., Δp1 = Δp2, we can get 

the following expression: 

 
Q2

Q1
=

W2
3

C2(α2)L2(W2 + H)2
[∑

C1x(α1x)L1x(W1x + H)2

(W1x)3

5

x=1

] (S4) 

The design criterion for efficient particle trapping is that the volumetric flow rate along the bypass 

channel (Path 2) should be smaller than that of trapping path (Path 1),(Tan and Takeuchi 2007) i.e., 

Q2 Q1⁄ < 1.  

Therefore, the trapping criterion can be expressed as: 

 
W2

3

C2(α2)L2(W2 + H)2
[∑

C1x(α1x)L1x(W1x + H)2

(W1x)3

5

x=1

] < 1 (S5) 

Depending on this criterion, we derived the dimensions of the channels and traps for the design in Fig. 

1C. The geometric dimensions of these designed are summarised in Table S1. 

 

Table S1: Channel dimensions (Unit: µm). 

 L11(L14) L12(L15) W12 W13 L13 W2 L2 H 

5um 

Trapping 

Gap 

10 5 5 25 50 25 805 15 

 

 

Cell model 

When an AC electric field is applied to a cell in suspension, the dielectric properties of the cell change 

as a function of frequency, known as Maxwell-Wagner dispersion. The dielectric behaviour of cell 

suspensions can be analysed using Maxwell’s mixture theory. One basic model of a cell in suspension 

is the “single-shell” model (Fricke 1925), in which the cell membrane is modelled as a thin dielectric 

shell and the cytoplasm is modelled as a conducting homogeneous sphere. This model assumes only 

one spherical shell separating the cell inner from the ambient and also ignores the intracellular 

structures of cells thereby simplifying the analysis. The single-shell model showed a good agreement 

with experimental data for cells with negligible nucleus or organelles, however, it presented a partial 

disagreement with experiment for cells containing sizeable intracellular structures (Asami et al. 1989). 

To effectively accommodate the actual cell’s morphology (e.g., the presence of a sizeable nucleus 

within the intracellular space), Irimajiri et al. proposed a more comprehensive cell analogy - the 

“double-shell” model (Irimajiri et al. 1978; Irimajiri et al. 1979). In this model, the cell is composed 

of four phases, i.e., cell membrane, cytoplasm, nuclear envelope and nucleoplasm (Fig. 1D). The 

“double-shell” implies the thin cell membrane and nuclear envelope, with the membrane separating 

the cytoplasm from the ambient medium and the nuclear envelope separating the nucleoplasm from 
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the cytoplasm. Each phase is modelled with its own electrical properties (conductivity ‘ 𝜎 ’ and 

permittivity ‘𝜀’). The conductivity and permittivity of the medium are 𝜎𝑚𝑒𝑑 and 𝜀𝑚𝑒𝑑 respectively. 

The dielectric properties of the membrane and cytoplasm are significantly different from those of the 

nuclear envelope and nucleoplasm (Pethig et al. 2010). The double-shell model is more appropriate 

than the single-shell model for studying cells with a high nucleus-to-cytoplasm (N/C) ratio such as 

stem cells, as the properties of the nuclear envelope and nucleoplasm are taken into account. 

Assuming a spherical cell is suspended in a medium, the equivalent complex permittivity of the whole 

mixture (cell and medium) is given by the Maxwell’s mixture theory for heterogeneous systems: 

 𝜀�̃�𝑖𝑥 = 𝜀�̃�𝑒𝑑

2(1 − 𝜑) + (1 + 2𝜑) 𝜀�̃�𝑒𝑙𝑙 𝜀�̃�𝑒𝑑⁄

(2 + 𝜑) + (1 − 𝜑) 𝜀�̃�𝑒𝑙𝑙 𝜀�̃�𝑒𝑑⁄
 (S6) 

where 𝜀�̃�𝑖𝑥, 𝜀�̃�𝑒𝑙𝑙 and 𝜀�̃�𝑒𝑑 are the complex permittivities of the cell-medium mixture, the cell and the 

suspending medium respectively, 𝜑 is the fractional volume of the cell relative to the suspending 

system. The complex dielectric permittivity is described in terms of the absolute permittivity (𝜀) and 

conductivity (σ), i.e., 𝜀̃(𝜔) = 𝜀 − 𝑗𝜎. 

Based on the double-shell model (Fig. 1D), the equivalent complex permittivity of the whole cell, 

containing a spherical membrane, cytoplasm, nuclear envelope and nucleoplasm, can be written as: 

 𝜀�̃�𝑒𝑙𝑙 = 𝜀�̃�𝑒𝑚

2(1 − 𝜑1) + (1 + 2𝜑1) 𝜀1̃ 𝜀�̃�𝑒𝑚⁄

(2 + 𝜑1) + (1 − 𝜑1) 𝜀1̃ 𝜀�̃�𝑒𝑚⁄
 (S7) 

where 𝜀�̃�𝑒𝑚  is the complex permittivity of the cell membrane, 𝜑1  is the fractional volume of 

cytoplasm sphere relative to the membrane sphere, i.e., 𝜑1 = (
𝑅−𝑑

𝑅
)3. 𝑅 and 𝑑 are the outer radius of 

the cell and the thickness of the cell membrane, respectively. 𝜀1̃ is the equivalent complex permittivity 

of the inner part of the cell (including the cytoplasm, nuclear envelope and nucleoplasm) and is given 

by:  

 𝜀1̃ = 𝜀�̃�𝑝

2(1 − 𝜑2) + (1 + 2𝜑2) 𝜀2̃ 𝜀�̃�𝑝⁄

(2 + 𝜑2) + (1 − 𝜑2) 𝜀2̃ 𝜀�̃�𝑝⁄
 (S8) 

where 𝜀�̃�𝑝  is the complex permittivity of the cytoplasm. 𝜑2  is the volume fraction of the nucleus 

relative to the cytoplasm, i.e., 𝜑2 = (
𝑅𝑛𝑒

𝑅−𝑑
)3, where 𝑅𝑛𝑒 is the outer radius of the nuclear envelope. The 

equivalent complex permittivity of the nucleus (containing the nuclear envelop and nucleoplasm), 𝜀2̃, 

is given by: 

 𝜀2̃ = 𝜀�̃�𝑒

2(1 − 𝜑3) + (1 + 2𝜑3) 𝜀�̃�𝑝 𝜀�̃�𝑒⁄

(2 + 𝜑3) + (1 − 𝜑3) 𝜀�̃�𝑝 𝜀�̃�𝑒⁄
 (S9) 

where 𝜀�̃�𝑒, 𝜀�̃�𝑝 are the complex permittivity of the nuclear envelope and nucleoplasm respectively, 𝜑3 

is the fractional volume of the nucleoplasm sphere relative to the nuclear envelope sphere, i.e., 𝜑3 =

(
𝑅𝑛𝑒−𝑑𝑛𝑒

𝑅𝑛𝑒
)3, and 𝑑𝑛𝑒 is the thickness of the nuclear envelope.  

Fig. 1D presents the electrical model of a cell suspended in a medium inside a microfluidic system. 

The total complex impedance of a cell surrounded by a medium (i.e., cell-medium mixture) in the 
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sensing volume is �̃�𝑚𝑖𝑥 and the complex impedance of the medium in the reference volume is �̃�𝑚𝑒𝑑. 

Coplanar electrodes are patterned on the bottom glass substrate. Between the electrode surface and the 

electrolyte forms an electrical double layer, of which the capacitance is notated as �̃�𝐷𝐿. With double 

layer capacitance taken into account, the total impedance measured from the electrodes in sensing 

group is �̃�𝑠𝑒𝑛𝑠𝑒 and the total impedance measured from the electrodes in the reference group is �̃�𝑟𝑒𝑓. 

The complex impedance of the cell-medium mixture can be written as (Morgan et al. 2007): 

 �̃�𝑚𝑖𝑥 =
1

𝑗𝜔�̃�𝑚𝑖𝑥

 (S10) 

where �̃�𝑚𝑖𝑥 is the complex capacitance of the cell-medium mixture. 

For the coplanar electrode configuration, assuming the width and length of the coplanar electrodes are 

𝑤 and 𝑙 respectively, and the spacing between them is 2𝑔, the complex capacitance of the cell-medium 

mixture between the two sensing electrodes can be derived using Schwartz-Christoffel transformation 

(Sun et al. 2007): 

 �̃�𝑚𝑖𝑥 = 𝜀�̃�𝑖𝑥𝑙
𝐾(√1 − 𝑘2)

𝐾(𝑘)
 (S11) 

where 𝐾(𝑘) is the complete elliptic integral of the first kind, and 𝑘 is given by: 

 𝑘 =
tanh (

𝜋𝑔
2ℎ

)

tanh (
𝜋(𝑤 + 𝑔)

2ℎ
)

; (S12) 

The electrical double layer formed at the interface of the electrode surface and the electrolyte can affect 

the electrical response of the measurement system. The electrical double layer is modelled as a 

capacitor (𝐶𝐷𝐿), and is in series with the total complex impedance of the cell-medium mixture (Fig. 

1D). Therefore, the total impedance measured from the sensing electrodes, �̃�𝑠𝑒𝑛𝑠𝑒 , can be expressed 

as: 

 �̃�𝑠𝑒𝑛𝑠𝑒 =
2

𝑗𝜔𝐶𝐷𝐿
+ �̃�𝑚𝑖𝑥 (S13) 

For the reference group in Fig. 1D, the complex impedance of the medium between the two reference 

electrodes is given by: 

 �̃�𝑚𝑒𝑑 =
1

𝑗𝜔�̃�𝑚𝑒𝑑

 (S14) 

where, 

 �̃�𝑚𝑒𝑑 = 𝜀�̃�𝑒𝑑𝑙
𝐾(√1 − 𝑘2)

𝐾(𝑘)
 (S15) 

With double layer effects taken into account, the total impedance measured from the reference 

electrodes, �̃�𝑟𝑒𝑓, is given by: 
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 �̃�𝑟𝑒𝑓 =
2

𝑗𝜔𝐶𝐷𝐿
+ �̃�𝑚𝑒𝑑 (S16) 

The differential spectrum of a cell can be obtained by normalising the impedance of the sensing group 

with regard to the impedance of the reference group (Malleo et al. 2010): 

 �̃�𝑑𝑖𝑓𝑓 =
�̃�𝑠𝑒𝑛𝑠𝑒

�̃�𝑟𝑒𝑓

 (S17) 

where the magnitude, |�̃�𝑑𝑖𝑓𝑓|, and the phase, 𝛷𝑑𝑖𝑓𝑓, of the differential impedance spectrum are, 

 |�̃�𝑑𝑖𝑓𝑓| =
|�̃�𝑠𝑒𝑛𝑠𝑒|

|�̃�𝑟𝑒𝑓|
 ;    𝛷𝑑𝑖𝑓𝑓 = 𝛷𝑑𝑖𝑓𝑓 − 𝛷𝑟𝑒𝑓 (S18) 

 

Device fabrication details 

Electrode fabrication. Electrodes were patterned on 2” Pyrex glass wafers by lift-off. AZ 5214E 

photoresist (MicroChemicals) was used in image reversal mode as the sacrificial layer for the lift-off 

process. First, the glass substrate was cleaned and dehydrated on a 200°C hot plate for 5 minutes. 

Photoresist spin coating was performed immediately after cooling down the substrate to avoid re-

adsorption of water. AZ 5214E was spin-coated onto the wafer at 500 rpm for 5 seconds and then 4000 

rpm for 45 seconds. The resulting film thickness was 1.6 um, calibrated by profilometer. After 

removing the edge bead by acetone, the substrate was pre-baked at 105°C for 60 seconds, and then 

rehydrated at room temperature for 10 minutes before exposure to allow a certain water content to be 

present in the resist during exposure, so that a reasonably high development rate and contrast could be 

achieved. UV exposure of the resist was done with the Karl Suss MJB4 mask aligner (exposure energy: 

10 mJ/cm2). After exposure, the sample was relaxed for 10 minutes to outgas the nitrogen formed 

during exposure from the exposed resist. Reversal bake of the resist was performed on a 116°C hotplate 

for 60s, after which a flood UV exposure was done using the mask aligner (exposure energy: 300 

mJ/cm2). The resist was developed in AZ 726 MIF developer (MicroChemicals) for 90 seconds, rinsed 

with DI water and blow-dried with nitrogen gas. The resist was slightly over-developed to create 

undercut and ease the lift-off process. Titanium (20 nm, as an adhesion layer) and gold (100 nm) were 

deposited on the sample by electron beam evaporation (Kurt J. Lesker e-Beam Evaporator PVD 75) at 

a deposition rate of 1Å/s. After metal deposition, the photoresist was removed in AZ 100 remover bath 

at 50°. After lift-off, the substrate was thoroughly rinsed with DI water and dried with nitrogen, and 

electrode patterns were inspected with microscope. The width of the electrodes at the sensing region 

of the chip is 15 µm, and the distance between two neighbouring electrodes is 15 µm. 

Master wafer fabrication. The master moulds for the microfluidic trapping channels (geometric 

dimensions are listed in Table S1) were fabricated using negative photoresist SU-8 2015 (MicroChem) 

by standard photolithography process. SU-8 2015 was spin-coated onto a 3” silicon wafer at 500 rpm 

for 8 seconds and 3000 rpm for 60 seconds, resulting in a 15µm-thick film. Soft bake was performed 

at 65°C for 1 minute and 95°C for 4 minutes. Exposure was done with Karl Suss MJB4 mask aligner 

(exposure energy: 140 mJ/cm2). After exposure, the wafer was post baked at 65°C for 1 minute, 95°C 
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for 3 minutes. After cooling down, the resist was then developed in SU-8 developer (PGMEA) for 3 

minutes (with gentle agitation), then rinsed thoroughly with propanol and dried with nitrogen. A hard 

bake step was performed at 200°C for 5 minutes to improve the mechanical properties and thermal 

performance of SU-8. Prior to PDMS moulding, the surface of the master wafer was rendered 

hydrophobic by vapour deposition of FDTS (1H,1H,2H,2H-Perfluorodecyltrichlorosilane, 96%, Alfa 

Aesar). 

PDMS rapid prototyping. PDMS (Sylgard 184 silicone elastomer kit, Dow Corning) was prepared 

by mixing 10:1 base to curing agent. The mixture was degassed in a vacuum desiccator for 1 hour to 

remove all air bubbles. After degassing, the mixture was spun onto the master mould at 500 rpm for 8 

seconds and then 1000 rpm for 60 s. This layer was cured on a 65°C hot plate for 2 minutes and on a 

150°C hot plate for 5 minutes. The resulting PDMS layer (~ 60 um thickness) was thin enough that 

the shrinkage of PDMS, caused thermal expansion and contraction during the curing process, can be 

neglected. We found that this approach can effectively solve the shrinkage-induced PDMS registration 

problem during the alignment and bonding process of microfluidic channels and electrode patterns. A 

separate thick PDMS block, serving as a substrate for the thin PDMS layer for easy handling, was 

made by mixing the base and curing agent with 10: 1 ratio, degassing for 1 hour and then pouring onto 

a blank wafer. After curing, the thick PDMS substrate was peeled-off from the blank wafer, and bonded 

to the thin PDMS layer immediately after oxygen plasma treatment (Diener etcher, 100% power for 

20 seconds at 1.0 mbar). The bonded sample was further baked in a 65°C oven for 1 hour to improve 

the bonding strength, after which the PDMS was peeled off from the master mould and cut into desired 

shape. After channel inlets/outlets (1 mm diameter) were drilled using a biopsy punch, the PDMS 

sample was ready for bonding with glass to close the channel. Before bonding, the PDMS sample 

(containing microfluidic channels) and the glass substrate (containing electrode patterns) were cleaned 

properly and activated by oxygen plasma. Immediately after the plasma activation, the two pieces were 

aligned and brought into conformal contact to form permanent bonding. A soft force was applied to 

remove any trapped air bubbles. The bonded sample was then baked in a 65°C oven for 1 hour to 

improve the bonding strength. 

Device assembling and experiment setup. Surface mount connectors (0.1" surface mount terminal 

strip, Samtec TSM series) were used to make the connections between the electrode patterns on the 

fabricated chip and external measuring instrumentation. The connectors were bonded to the electrode 

pads on the chip using silver conductive epoxy (Fig. 1A). The microfluidic device was connected to a 

1 ml syringe with PTFE tubing (0.59mm ID x 0.25mm Wall) and 23G needles. Fluid flow was 

controlled by syringe pumps. Before use, the channels were pre-treated with 1% BSA (in 1×PBS) for 

30 minutes to block hydrophobic interactions between biological samples and PDMS surface. The chip 

was connected with an impedance analyser (Solartron SI 1260) for impedance measurements. Prior to 

cell characterisation, the device was first filled with PBS buffer, and a calibration experiment was 

performed for the device itself, serving as a baseline for further cell measurements. After the 

calibration, cells were loaded into the device at flow rate of 20 µl/hr. Once all traps were occupied by 

cells (inspected with microscope), the device was washed with buffer. Cell impedance measurements 

were then conducted with the impedance analyser. A 100 mV input single was used. The frequency 

range was from 100 Hz to 20 MHz, with 10 points being measured per decade. Analytical simulations 

based on the double-shell cell model were performed using Matlab. Numerical simulations were 

conducted using COMSOL 4.4 (AC/DC module). 
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Fig. S1 

 

Fig. S1: Simulations showing the electrical filed distribution and current density inside the channel. Four electrodes are 

patterned on the bottom channel wall. Simulations are performed using COMSOL Multiphysics 4.4 AC/DC module. (A) 

Electric potential distribution in the channel at 100 kHz. Only the middle plane in z direction is shown for clarity. (B) 

Streamlines showing the current density inside the channel at 100 kHz. Current streamlines are squeezed and concentrated 

via the narrow trapping gap, resulting in highest current density through the trapping gap.   
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Fig. S2 

 

Fig. S2: Magnitude histograms at different frequencies (cell differentiation experiment). 
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Fig. S3 

 

Fig. S3: Phase histograms at different frequencies (cell differentiation experiment). 
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Fig. S4 

 

Fig. S4: Real-imaginary impedance scatter plots at different frequencies (cell differentiation experiment). 
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